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ABSTRACT 

Following [5], a 7"3 space X is called good (splendid) if it is countably 
compact, locally countable (and oJ-fair). G(~) (resp. S(~)) denotes the 
statement that a good (resp. splendid) space X with IX[ = ~ exists. We 
prove here that (i) C o n ( Z F ) ~ C o n ( Z F C + M A + 2  ~ is b ig+S(~ )  
holds unless m = c f ( ~ ) < K ) ;  (ii) a supercompact cardinal implies 
Con(ZFC + MA + 2 ̀0 > m,o + l + -1G(c% + 1)); (iii) the "Chang conjecture" 
(OJ~+l, OJ,o)--'(~Oi, O~) implies nS(x) for all i¢>oJ~o; (iv) if ~ adds ~o~ 
dominating reals to V iteratively then, in V ~', we have G(2 ~) for all/.. 

§0. In troduc t ion  

In this paper we countinue the investigations started in [5] concerning the 
following problem first raised by E. van Douwen [3]: What can be the 
cardinality of a countably compact, locally countable T3 space? 

Let us recall some notation and terminology from [5]: A T3 space X is called 
good if it is both countahly compact and locally countable, and it is called 
splendid if in addition it is also co-fair. (A space X is called K-fair if for every 
Y ~ [X]  ~ we have I ]7- I = ~: as well.) G (~) (resp. S(K)) denotes the statement that 
a good (resp. splendid) space of cardinality ~: exists. 

The main results of [5] may now be summarized as follows: 

0.1 .  F o r  ~: > co, G(t¢) implies cf(x)4: co, moreover if ~: > 2 °' then even 
/~co =1¢ .  
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0.2. For all n Eco we have S(co.). 

0.3. Martin's axiom implies G((2o,)+") for each n E co. 

0.4. If V = L then S(x) is valid unless cf(x) = co < x. 

Recently, P. Nyikos has observed that the proof of 0.4 in [5], with practically 

no alternations, actually yields the same conclusion if one only uses the 

following consequence of V = L: if cf(x) -- co < x then 

(a) the cofinality of  [x] °' under inclusion is x +, i.e. there is ~¢ c [x]o, with 

I ~tl = x+ such that every member of [x]o, is contained in some member of ~t 

(of course, i f x  > 2 ~' this implies x '° = x+); 

(b) I~  holds. 

Since (a) and (b) are also valid if one only assumes that the covering lemma 

holds over the core model, cf. [1] or [2], it is clear that large (in particular, 

many measurable) cardinals are needed if one intends to build a model in 

which the conclusion of 0.4 fails. 

§1. Good spaces of size less than 2 °' 

The results in [5] left the following problem open: Can G(x) be valid for 

some x with coo, < x < 2'°? In this section we are going to give a complete 
answer to this question. 

The first half of  this answer is based on the following simple lemma. 

1.1. LEMMA. For any x, S(x) is preserved under CCC forcing. 

PROOF. Let Xbe a splendid space (ofcardinality x) in Vand Qbe any CCC 
notion of forcing; we claim that X remains splendid in V o. Since local 

countability and the/ '3 property are obviously preserved in any extension of 
V, it remains only to show that X will remain countably compact and co-fair in 
VQ. 

To see this, let A be any countable subset o fX in  V °. Since Q is CCC, there is 

a countable B c Xin  Vwith A c B. Now B is a countable compact/ '3 space in 

V, hence it is homoemorphic to a countable successor ordinal with its order 

topology. Consequently, B will trivially remain compact hence closed in V Q, 

showing both that A has a limit point and that .4 c B is countable. 

Now, from 0.4 and 1.1 we immediately obtain the following corollary that 

gives an affirmative answer to the problem explicitly formulated on p. 206 
of[5]. 
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1.2. COROLLARY. I f  ZF  is consistent, so is "ZFC + MA + 2 °, is as large as 

you wish + S(tc) is valid unless K is singular o f  cofinality o9". In particular, we 

see that MA plus o90"+1 < 2 °' is consistent with S(o90"+ i). 

Now, in order to get consistency results going in the opposite direction we 

introduce the following definition. 

1.3. DEFINITION. For x >_-- o90" let P(x) denote the following statement: for 

any collection ~ c [o90"]0" with I~fl = x there is some BE[O90"]0" such that 

IA t~BI <co  for allA c M. 

The reason for giving this definition is the following trivial observation: if  

P( r )  holds then G(~c) fails. Indeed, assume X is a locally countable T~ space 

with I XI = ic. Since, by the definition, P ( r )  implies ~c > o90", we may assume 

that o90" c X. For every point p ~ X let us pick a countable neighbourhood Up 

and apply P( r )  to the collection {Up N o90" :p  ~ X } .  This gives us a set 
B ~[o90"]o" c [X]o" for which B N Up is finite for every p ~ X ,  hence B has no 

limit point in X, i.e. X is not countably compact. 

Comparing this observation with our remark made at the end of§0, it is clear 

that if we want to show the consistency of  P0c) for some ~ > too, then large 

cardinals have to be used. Fortunately, this has been done for us by Magidor in 

[8], where, for r = o90" +,, the assumption of our next implication was shown to 

be consistent from a supercompact cardinal. 

1.4. LEMMA. Assume that 
2 °' < o90" < < (o90")0". 

Then POc) is valid. 

PROOF. Let M C [o90"]0" with [ M,[ = ~c. By an old result of  Sierpinski [9] 

there is an almost disjoint collection ~ c [o90"]0" with 

For each A ~ s / l e t  us put 

~A = { B ~ : I B  f3AI =co}. 

Since ~ is almost disjoint, we clearly have 

I~AL--<_ 20" < C00", 

consequently 
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I U {..~A :A ~,.d}l < x .  

But then for any B ~ ~ \ U{~A : A E ~¢} we have I B n A I < 09 for allA C sO, 

hence the proof is completed. 

Of course, 0.1 immediately implies that G(K) is false if  2`o < o9o, < x < o9~. 

In order to put 1.4 to use we still need the following lemma. 

1.5. L~MMA. P(x) is preserved under any CCC forcing. 

PRooF. Let Q be any CCC notion of forcing and let, in V Q,f: x - -  [og`o]̀ o be 

a function enumerating an ~¢ c [og`o] with Iz¢l = x. Now by a theorem of  

[6, p. 206] there is a function F :  x---[og`o]`o in Vsuch that f (a)  C F(a) for all 

a ~ x. Then we have a B ~ [og`o]̀ o such that I B n F(a) I < 09 for all a < x. Then 

we have I A n B I < o9 for all A E ~¢. 

As an immediate corollary of  this, Magidor's above-mentioned result, and 

1.4 we get the following result. 

1.6. COROLLARY. I f  there is a supercompact cardinal then it is consistent to 
ha ve Martin's axiom plus og`o + ~ < 2`o plus the failure of  G(og`o + 1). 

§2. When all splendid spaces are small 

In view of  our remark made at the end of§0, large cardinals are needed if one 

wants to establish e.g. the consistency of the statement that the cardinalities of  

splendid spaces are bounded. Of course, by 0.2, the least possible such bound is 

O.)oj. 
In this section our aim is to show that there is a reasonable assumption, first 

considered in [7] by Levinsky, Magidor and Shelah, which indeed implies that 

this is the case. This assumption is actually a model-theoretic statement, a case 

of  Chang's conjecture, usually denoted by the symbol 

(o9`o+ o9`o)-" (o91, o9). 

The meaning of this is as follows: if s¢ = (A, U, R, : n ~ to) is any structure 

such that IA I -- og`o+t, U c A is unary with I UI = o9,o then ~ has an elemen- 

tary substructure ~¢' = (A', U', R~ : n Eog) for which IA'l -- o91 and I U'I -- 
o90 (of course, here U' = U n A' and R" = R, n (,4')i, for n E o9, where i, is the 

arity of  R,). 
In [7] Levinsky, Magidor and Shelah proved that the existence of  a 2-huge 

cardinal implies the consistency of  GCH plus (og`o+ ~, og`o)---(o9~, o9). For our 



306 I. JUHASZ ET AL. Isr. J. Math. 

purposes it will be convenient to first give the following topological conse- 
quence of  this proposition. (Note that, as is easily seen by a simple induction, 
any first countable co-fair space is also con-fair for each n ~ co.) 

2.1.  THEOREM. I f ( c o  o + t, coo) ~ (cot, co) holds then any first countable space 
that is co-fair is also coo,-fair. 

PROOF. Assume, on the contrary, that there is an co-fair first countable 

space X with I X I = coo, + t and a dense subset S c X with f S I = coo,. Let us fix 
for each p ~ X a neighbourhood base { Vn (p)  : n ~ co } in X and then for each 
n E co we define a binary relation Rn on X as follows: 

Rn(X, y) o y  e Vn(X). 

Now, applying (coo,+~, cotO)"'~" (COl, co) to the structure ~ = (X, S, Rn : n ~co)  
we get a set Y~[X]o,, such that I S n Y l = c o  and ~ ¢ = ( Y ,  S o Y ,  R n o  
y2 : n E co ) is an elementary substructure of £r. 

We claim that S O Y is dense in Y, which contradicts the assumption that X 
is co-fair. Indeed, since S is dense in X, for each n ~ co we have that the 

sentence 
Vx  3 y[Rn(x, y) ^ y ES] 

is satisfied in ~ ,  consequently the same sentence is also satisfied in @. Now, it 
is obvious that this actually means that Y N S is dense in Y. 

Since, by 0.1,  no good space of  size > coo, is coo,-fair we immediately get the 
following corollary. 

2.2. COROLLARY. If(coo,+l, coto)"-¢'(col, co) holds then S(x) implies x < coo,. 

P. Nyikos, after having heard of  this result, gave the following strengthening 

of  it: (09o,+ t, coo,)---(cot, co) implies that every first countable, co-bounded and 
locally hereditarily Lindel6f space has Lindel6f degree < coo,. Below we show 
that already the assumption "every co-fair first countable space is coo,-fair" 
yields the same conclusion. Moreover, our proof  is completely different from 
and much simpler than his. 

2.3. THEOREM. Assume that every avfair first countable space is coo,-fair. 
Then for every first countable, co-bounded and locally hereditarily Lindelof 
space X we have L(X) < coo,. 
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PROOF. The countable compactness of X clearly implies that L(X)  v ~ 09o 

(as well as L(F)  v ~ 09"0 for every closed subspace F of X). Moreover, since X is 
locally hereditarily Lindelrf  we have L (Y) = hL (Y) for every Y c X. 

Now, if we had L(X)  > 09o, then Xwould contain a right-separated subspace 

Swi th  ISl = 09o. Then L(~¢) = hL(~¢) > 09o, and L(~¢) ~ 09`0 imply that in fact 

L(~¢) > o9`0, hence we may choose a right-separated set Z c S with I ZI = 

09o, + 1" 

Let us now consider the subspace Y -- S U Z o f X .  We claim that Yis 09-fair, 

which will yield a contradiction since, of  course, Y is not 09o,-fair. 

Indeed, since X is 09-bounded, for every countable set A c X we have that `4 

is compact, hence being covered by finitely many hereditarily Lindel6f sets it is 

also hereditarily Lindelrf. Consequently, for every A ~[Y]'0 we have both 

1.4 ASI  _-< 09and I-4 tq ZI _-< 09, hence 1`4 M YI _-< 09, whichwas tobe  shown. 

We mention here, without proof, that the relation (09"0+ ~, 09,0)---(09~, 09) is 

preserved under CCC forcing. Consequently, from a model satisfying it we 

may get one in which it remains true and MA + 2 °, > 09o +1 are also satisfied. 

This yields us a model in which S(x), hence by [5] also G(x), fails non-trivially 

whenever 09`0 _-< K < 2 °'. But the existence of  a 2-huge cardinal is a much 

stronger requirement than that of  a supercompact cardinal, hence 1.6 is a 

better result. 

§3. Another model with arbitrarily large good spaces 

Our aim here is to show that a very simple forcing yields a model as 
described in the title. 

3.1. THEOREM. I f  ~ is the partial order that adds iterati rely 09~ dominating 
reals to V then in V ~', G(2 '°) holds for each cardinal 2. 

In this section we shall use D to denote the standard notion of  forcing that 

adds a dominating real to V, i.e. a function r:  09 ~ 09 such that r(n) > f ( n )  for 
all but finitely many n ~ 09 wheneve r fE  '°09 N V, cf [4]. 

A space Xis called nice iffit is a locally countable, locally compact T2 space. 

Let us remark that each nice space is both first countable and regular. 

The proof of 3.1 is based on the following lemma: 

3.2. LEMMA. Let (X, r )  be a nice space. Then, in V °, (X, r )  can be 

embedded as a dense, open subspace into a nice space ( Y, tr ) satisfying property 
( .)  below: 
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(.) Each Z E [X] '° n V has an accumulation point in ( Y, a). 

PaooF. First we fix, in V, a function F :  X × o9 ~ [X] _~o~ satisfying for each 

xEX3 .1 .1  and 3.1.2 below: 

3.1.1. F(x, O) ~ F(x, 1) D_ . . .  ~ F(x, n) 3_ . . . .  

3.1.2. {F(x, n) :  n e w }  forms a local base of x in (X, z) consisting of 
compact open neighbourhoods. 

Next we choose a maximal almost disjoint family ~ c [X] '° of  countable, 

closed discrete subsets of  X. For each A ~ ~¢ we use .4 to denote a one-to-one 
enumeration of  A in V in type o9. 

Now we will extend Xin  such a way that for each A E ~¢ the sequence A will 

become convergent. 

The underlying set of  ( Y, tr) will be 

Y = X U  {y~ :A E~t}  

where the YA's are new and different points. 

From now on we work in V °. Let us consider the function F* : Y × to 
[y] ~o, given by 3.1.3 and 3.1.4: 

3.1.3. F* extends F. 

3.1.4. F*(y~, n) = {y~} U U {F(.4(k), r(k))" k > n). 

We define the topology tr on Y as follows: for each y ~ Y we choose 
{F*(y, n) : n Eog} as a local base o f y  in Y. 

Obviously, (X, z) is an open, dense subspace of  Y. It is also clear that ( Y, tr) 

is locally countable. 
In order to prove that ( Y, tr) is locally compact let us first remark that each 

F(x, n) remains compact in Vo, because it is a countable, compact T2 space, 

i.e., homeomorphic to a countable successer ordinal. Consequently Yis locally 

compact at every x EX.  Next we prove that every F*(yA, n) is also compact. 

Indeed, i f S  is any infinite subset of  F*(yA, n) then either S N F(A(k), r(k)) 
is infinite for some fixed k > n or S intersects F(A(k), r(k)) for infinitely many 

k E o9, hence, in either case, S has a limit point. 

Let us now check property (.). Consider a B ~ [X] °' n Vhaving no accumu- 

lation point in X. By the maximality of s¢ we can find A E ~ having infinite 

intersection with B. But then YA is a limit point ofA n B, forA converges to YA. 
Lastly, we prove that ( Y, tr) is 7"2. Till now we have not used that r is a 
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dominating real. Let us fix two different points of  Y, say u and v. Since X is an 

open subspace of Y we can assume that u E Y \ X, u = YA. 
We distinguish two cases: 

Case l. vEX  
First we fix a k E t o  with vq~(.4(i)'i>=k}. Since A does not have an 

accumulation point we can choose a neighbourhood F(v, n) of v, having empty 

intersection with {.4(i)" i >_-k}. 

Now let us consider the function f :  to \ k --- to defined in V as follows: 

f(l) = min{i : F(A(/), i) C X\F(v ,  n)}. 

We know that r dominates f ,  i.e. we have m > k with f(i) < r(i) for each 

i > m. Thus F*(yA, m) and F(v, n) are disjoint neighbourhoods ofya and v. 

Case 2. v = y n ~ Y \ X  
First we fix k E t o  with { ~ t ( l ) . l > k } n { B ( l ) . l > k } = f g .  Since 

{,4(l) • l > k} and {B(I) • l > k} are disjoint, countable closed subsets of  the 

regular space X, they can be separated by open sets, i.e. there are functions 
f ,  g ~ o, t o n  V with 

U {F(.4(l), f(l))" l > k} n U{F(B(I),  g(l))" 1 > k} = ~ .  

But r dominates both f a n d  g, i.e. we have n > k with r(i) > f(i), g(i) for each 
i > n. This means that F*(yA, n) n F*(yB, n) = t~. 

This completes the proof of  Lemma 3.2. 

PROOF OF THEOREM 3.1. The poset ~ = go,, is given by the finite support 

iteration (P~ : a < toi, Q, : a < too where 

for each a < to~. 

Given a cardinal 2 with 2 °' = 2 we define nice spaces X, with X~ E V e. so that 

Xa is an open subspace of  Xp for each a < #, by induction on a < to~ as follows. 

We denote by z. the topology of X~. 

We set a discrete space of  cardinality 2 as X0 in V. For every limit a we put 

X~ = U{Xp : ,8 < a} with the topology z~ that is generated by U{zp : fl < a}. 

Standard tricks (cf. e.g. [6] p. 281) will insure that X~, z~E V e-. Obviously X~ 

will be nice and every Xp is open in Xa. 

I f a  =fl + 1 and Xp is defined then we apply Lemma 3.2 for Xp in V~'p. We 
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get a nice space Y in V~'r D = V ~',+, and we put Y as Xp + 1 o This completes the 

construction. 

We claim that Xo,, is as required. It is easy to see by induction that for a < to, 

I X~I = 2. Let A ~ [Xo,,]o,. Since we iterated by finite support there is a < to~ 

with A ~ [X~]o, N V e.. Then, by Lemma 3.2, A has an accumulation point in 

X,+ ~, hence in Xo,, as well. 

Thus Xo,, is a countably compact nice space with cardinality 2, i.e., G(2) 

holds. The proof is completed. 

Let us note finally that ~ ,  being CCC and ofcardinality continuum, is a very 

"mild" notion of forcing. Thus e.g. forcing with ~' does not change cardinal 

exponentiation and preserves large cardinals. In particular, as was mentioned 

at the end of §2, ~' preserves the relation (too, + i, too,)--" (to~, to), consequently 

this enables us to get a model in which S(x) implies x < too, but G(2o,) is valid 

for all cardinals 2. 

Moreover, this leads to the following intriguing problem: Is it true in ZFC 

that G(2 '°) is valid for all 2? Note that by 0.1 this would be equivalent to the 

statement that G(x) is valid for arbitrarily large cardinals x. 

REFERENCES 

1. A. Dodd, The core model, London Math. Soc. Lecture Notes Ser. 61, Cambridge 
University Press, 1982. 

2. A. Dodd and R. Jensen, The covering lemmafor K, Ann. Math. Logic 22 0982), 1-30. 
3. E. van Dowen, Functions from integers to integers and topology (prepfint). 
4. T. Jech, Set Theory, Academic Press, 1978. 
5. I. Juhfisz, Zs. Nagy and W. Weiss, On countably compact, locally countable spaces, Period. 

Math. Hung. 10(2-3) 0979), 193-206. 
6. K. Kunen, Set Theory, North-Holland, 1980. 
7. J. P. Levinski, M. Magidor and S. Shelah, Consistency of instances like (R~+l, ~o) -~ 

(R~, R0), in preparation. 
8. M. Magidor, On the singular cardinals problem I, Isr. J. Math. 28 (1977), 1-31. 
9. N. H. Williams, Combinatorial Set Theory, North-Holland, 1977. 


